728x90
반응형
소스 코드
logistic_regression.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | # Lab 5 Logistic Regression Classifier import tensorflow as tf x_data = [[1, 2], [2, 3], [3, 1], [4, 3], [5, 3], [6, 2]] y_data = [[0], [0], [0], [1], [1], [1]] # placeholders for a tensor that will be always fed. X = tf.placeholder(tf.float32, shape=[None, 2]) Y = tf.placeholder(tf.float32, shape=[None, 1]) W = tf.Variable(tf.random_normal([2, 1]), name='weight') b = tf.Variable(tf.random_normal([1]), name='bias'); # Hypothesis using sigmoid: tf.div(1., 1. + tf.exp(tf.matmul(X, W))) hypothesis = tf.sigmoid(tf.matmul(X, W) + b) # cost/loss function cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) * tf.log(1 - hypothesis)) train = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(cost) # Accuracy computation # True if hypothesis > 0.5 else False predicted = tf.cast(hypothesis > 0.5, dtype = tf.float32) accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32)) # Launch graph with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for step in range(10001): cost_val, _ = sess.run([cost, train], feed_dict={X: x_data, Y: y_data}) if step % 200 == 0: print(step, cost_val) # Accuracy report h, c, a = sess.run([hypothesis, predicted, accuracy], feed_dict={X: x_data, Y: y_data}) print("\nHypothesis: ", h, "\nCorrect(Y): ", c, "\nAccuracy: ", a) | cs |
반응형
'Study > Machine&Deep Learning' 카테고리의 다른 글
[ML] Fancy Softmax Classifier (0) | 2018.05.31 |
---|---|
[ML] Softmax classifier (0) | 2018.05.29 |
[ML] TensorFlow로 파일에서 데이터 읽어오기 (2) | 2018.05.16 |
[ML] multi-variable linear regression (0) | 2018.05.08 |
[ML] Linear Regression의 cost 최소화 (0) | 2018.05.08 |
댓글